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Introduction 

The Cray XC series is a distributed memory system developed as part of Cray’s participation in the 
Defense Advanced Research Projects Agency’s (DARPA) High Productivity Computing System (HPCS) 
program. Previously codenamed “Cascade,” the Cray XC system is capable of sustained multi-petaflops 
performance and features a hybrid architecture combining multiple processor technologies, a high 
performance network and a high performance operating system and programming environment. 

Specifically, the Cray XC network provides programmers with global access to all of the memory of their 
parallel application. The Cray-developed Aries™1 interconnect provides substantial improvements on 
standard network performance metrics for high performance computing (HPC): bandwidth, latency, 
message rate and scalability. In addition, the Aries design addresses a key challenge in high 
performance networking — how to provide cost-effective, scalable global bandwidth. The network’s 
unique ability to efficiently execute complex global communication patterns broadens the range of 
applications that perform well on the Cray XC system.  

The Cray XC network design provides a wide range of HPC-optimized system attributes: 

• Systems can be configured to match bandwidth requirements and cost constraints by varying 
the number of optical connections 

• Address space of general purpose processors is extended to efficiently access all the physical 
memory in the system 

• Suite of communication and synchronization mechanisms: block transfer engines for 
asynchronous pipelined memory copies, atomic memory operations, barriers, source and 
destination-side synchronization, message delivery doorbells and collective combining trees 

• Network protocol designed for efficient transfer of 8- to 64-byte messages at low overhead; 
combination of small packet sizes and a rich set of packet-by-packet adaptive routing algorithms 
ensure high utilization under heavy load  

Aries uses a system-on-a-chip design that combines four high performance network interface controllers 
(NIC) and a high radix router. A single device provides the network connectivity for the four nodes on a 
blade. The Aries NIC is an enhanced version of the Gemini device used in the Cray XE6™ system, with 
the addition of a PCI-Express Gen3 host interface enabling connectivity to a wide range of CPU types. 

                                                      
1 The Aries trademark is owned by Intel.  
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The Cray XC series uses a novel high-bandwidth, low-diameter network topology called “Dragonfly” [1].  
Developed as part of the DARPA program, it provides scalable global bandwidth while minimizing the 
number of expensive optical links. High-speed, low-cost electrical links connect groups of up to 384 
nodes within a pair of Cray XC cabinets and optical cables are used for the long links between groups. 
The Cray XC system has no external switches and half the number of optical links as an equivalent fat 
tree. Overall, the Cray XC network is highly modular, supporting flexible configuration of systems with 
up to 92,544 nodes.   

The Cray software stack uses the advanced features of the Cray XC network to provide highly optimized 
implementations of standard programming environments such as MPI and Cray SHMEM™ together 
with novel partitioned global address space (PGAS) programming models such as Fortran with 
Coarrays2 [12], Unified Parallel C (UPC) [13] and Chapel [14]. A single Cray Linux Environment™ (CLE) 
release supports both the Cray XE6 and Cray XC systems. System-specific features are hidden behind 
standard application interfaces ensuring a high degree of compatibility and simplifying application 
porting between systems.  

This whitepaper will discuss why a supercomputer needs a network with high global bandwidth; 
introduce the Dragonfly design and compare it with a fat tree;  describe implementation of the Aries 
device and its use in Cray XC series; and present performance data.    

Cost-Effective, High-Bandwidth Networks 

Many HPC applications have nearest neighbor, or local, communication patterns. This feature reflects 
locality in the underlying physical process being simulated. Applications with regular data 
decomposition (e.g., a 2-D mesh) can be executed efficiently on a parallel system with network 
connections between neighboring nodes, such as the 3-D torus used in Cray XT™ and Cray XE6 
systems [2, 3]. Mapping an application mesh of one size to a system mesh of another introduces a 
degree of non-locality, but excess router bandwidth compensates for this.  

Applications using high-dimensional or unstructured meshes or adaptive mesh refinement techniques 
require longer-range communication once distributed over a parallel machine. Some important classes 
of algorithms require non-local communication from the outset. For example, where Fourier transforms 
are used, two non-local exchange operations per time step typically occur. Other classes of applications 
have unstructured traffic with no underlying data locality. When such applications are executed on a 
machine with only local connectivity, each network packet must traverse multiple hops between source 
and destination nodes. Each hop increases the network load. Additional network load is generated 
when such systems execute multiple concurrent jobs. For example, contention is generated when 
traffic from two or more jobs shares the same network resources. This additional load can arise as a 
result of the way the scheduler allocates jobs to nodes, or through their access to the file system.   

The ability of an HPC network to execute such workloads can be characterized by the ratio of its global 
bandwidth3 to its injection bandwidth. The torus routers used in the Cray XE6 system have five times as 
much routing bandwidth as injection bandwidth. This ratio is many times that of competing systems, 
but performance will degrade when packets take an average of more than five hops. The bandwidth 
that each node can sustain on complex traffic patterns (e.g., all-to-all) falls as the system size increases. 

                                                      
2 Coarray Fortran (CAF) is part of the Fortran 2008 standard and is called Fortran with Coarrays.  
3 The bisection bandwidth of a network is often used in this context. It measures the worst-case bandwidth achieved by 
dividing a system in two, with all nodes in each half communicating with a peer in the other half. This measure is useful, 
although for global exchange or pseudo-random communication patterns only half of the traffic crosses the bisection. Global 
bandwidth measures take this into account, reporting the bandwidth on traffic patterns for which each node (or set of nodes) 
communicates equal amounts of data with every other node (or set of nodes) in the system. 
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The objective of the Cascade program was to make Cray systems more productive by increasing their 
programmability, performance and efficiency. By increasing the global bandwidth, the system can 
efficiently execute a wider range of applications.  

A class of networks known as “fat trees” [4] is widely used in constructing clusters and mainstream HPC 
systems. These networks can have global bandwidth equal to their injection bandwidth although they 
are frequently tapered, reducing bandwidth and cost. A fat tree network is constructed using routers of 
a given radix k. In a full bandwidth network, half of the ports connect down to the nodes and half 
connect up to additional stages of switch. At the top stage all links connect down. The number of 
nodes connected by a network with s stages is 2 × (k/2)s. In a high density design, the lower stages of 
the tree connect nodes on the same board or within the same chassis. Short electrical links can be used 
to connect these components to switches within a cabinet, but the upper stages of the network 
connect widely separated groups of nodes. Larger fat tree networks are built using a three-stage 
network. Optical cables connect a single stage of top-of-rack switches to high port count external 
switches providing two additional network stages.  

However, the need to add network stages as the system size grows lies behind a number of the 
problems that make fat trees unsuitable for constructing large, high-bandwidth networks. Specifically: 

• High router radix (e.g., 64) or a four-stage network. While low port count top-of-rack switches are 
relatively inexpensive, the high port count switches necessary for building large systems are 
significantly more expensive. Furthermore, building top switches that provide more than two 
network stages is impractical.  

• One long link for every node in a large full bandwidth network. With high signal speeds this link 
generally needs to be optical. The number of these links can be reduced in a tapered fat tree, but it 
reduces global bandwidth proportionately.  

• Many unused switch ports unless the system size and the router radix match well. This feature leads 
to big discontinuities in the cost per port as the system size crosses boundaries set by the router 
radix and the switch implementation. 

Consider a fat tree network constructed from the 36-way routers typically used in InfiniBand networks. 
With 18 blades and a router per chassis there are 18 links up from each chassis. The chassis can be 
connected with 18 × 108-port switches to construct systems with up to 1,944 nodes. However, if the 
system has 2,000 nodes then it requires 144 or 216 port switches to connect the chassis together. Many 
of the network ports will go unused. Upgrading a system from 1,500 to 2,000 nodes would require the 
radix of the top switch to be increased, adding substantially to the cost. Furthermore, the maximum size 
of a system that can be constructed with three network stages is 2 × 183 = 11664 ports — less than half 
of the size of a large Cray system today. Building tomorrow’s even larger systems would require a fourth 
network stage, increasing the cost per node as the relatively inexpensive 36-way switches are replaced 
by a second set of high port count switches. The Cray “Black Widow” design [5] used in the Cray X2™ 
and Cray XT5h™ supercomputers demonstrated that a fat tree network can provide the required global 
bandwidth but is not cost effective at the scale required for the Cray XC system. 

The Cray XC network combines the high global bandwidth of Black Widow and the cost effectiveness 
of the Cray XE6’s torus. Dragonfly is a “direct” network, therefore avoiding the need for external top 
switches and reducing the number of optical links required for a given global bandwidth. Additionally, 
its design builds on earlier work showing the value of low-diameter networks constructed from high-
radix routers. Ideally, a router would have a sufficient number of ports to connect to all of the other 
routers in the system — the network would have diameter one. However, this topology is not practical 
for large systems. But if a group of routers — acting in concert as a single, very high radix router — 
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pooled their links, then the group as a whole could have enough links to directly connect to all of the 
other groups in the system. This idea is the key one behind the Dragonfly network. 

Low-cost electrical links are used to connect the NICs in each node to their local router4 and the routers 
in a group (see Figure 1). The maximum group size is governed by the maximum length of the electrical 
links which will, in turn, be limited by the signaling rate on the links.  

 
 

 

 
Each router provides both “intra-group” links that connect it to other routers in its group and “inter-
group” links (also known as global links) that connect it to other groups. The routers in a group pool 
their inter-group links, enabling each group to be directly connected to all of the other groups (see 
Figure 2). In large systems optical links are used for the long links between groups. In smaller systems 
the links between groups can be electrical although this limits system size.  

 

Each Dragonfly group has a fixed number of routers and provides a fixed maximum number of global 
ports, ensuring that network cost scales linearly with the system size. The global bandwidth of a 
Dragonfly network is given by:  

𝐺𝑙𝑜𝑏𝑎𝑙 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ = 𝑙𝑖𝑛𝑘 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ × 𝑔𝑙𝑜𝑏𝑎𝑙 𝑙𝑖𝑛𝑘𝑠 𝑝𝑒𝑟 𝑔𝑟𝑜𝑢𝑝 × 𝑔𝑟𝑜𝑢𝑝𝑠 

                                                      
4 NICs and routers are combined in the Cray XC series. While this technique can be useful in reducing cost, the Dragonfly 
design does not require it. 

Figure 1: Short electrical links connect both the NICs to the routers and the routers in each group of a 
Dragonfly network. The routers in a group pool their global links (shown in blue). 

Figure 2: Global links connect Dragonfly groups together — these links are optical in a large system. 
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For a large system, the global bandwidth is twice the bisection bandwidth as each group has an equal 
number of connections to each of the other groups. Global bandwidth grows linearly with system size. 
In all but the largest systems, each group has many more global links than there are groups, thus 
multiple connections can be made between every pair of groups. Where full global bandwidth is not 
required, the global network can be depopulated to reduce its cost. Notably absent here are the 
discontinuities in cost that characterize fat tree networks.   

The network is described by the group size, the number of groups and the number of links connecting 
each group to all of the other groups.  

In a Dragonfly network the shortest path between any two nodes is known as the “minimal” path. It 
may be within one group or between groups. A minimal path between groups requires electrical hops 
in the source and destination groups plus an optical hop between groups. Electrical bandwidth is over 
provisioned to allow for the higher loading on the intra-group links5.  

Where traffic from each group to each of the other groups is balanced — as it is for all-to-all or uniform 
random communication — the links are equally loaded on minimally routed traffic. However, if all nodes 
in one group were to communicate with nodes in one other group, there are insufficient links to 
achieve full bandwidth with minimal routing. This situation is known as worst-case traffic. In order to 
achieve high bandwidth on this type of traffic it is necessary to select “non-minimal” paths in which 
packets are routed through randomly selected intermediary groups. Non-minimal routing increases the 
aggregate network load but balances it over all of the available links.     

The extent of the advantage a Dragonfly network has over a fat tree can be seen in the extent to which 
packets are minimally routed. With 100 percent minimal routing, Dragonfly has a 2:1 advantage — each 
packet takes one optical hop at most as opposed to two in a fat tree. If all traffic is non-minimally routed 
then load on the optical links is equal to that in a full bandwidth fat tree6. Traffic patterns generating 
high volumes of global traffic are well suited to minimal routing given good diversity in the range of 
destinations each node is communicating with at any given point in time. Traffic patterns with low path 
diversity require a higher proportion of non-minimal traffic. However, if the traffic is local a high 
proportion of it will be contained within the electrical connected groups; the load on the global links 
will be low. The large electrical group size and high-bandwidth optical network between groups 
ensures that Cray XC systems are well suited to a wide range of HPC applications. Where high global 
bandwidth is not required the optical network can be scaled back to reduce cost.  

Aries 

Aries is a system-on-a-chip device comprising four NICs, a 48-port tiled router and a multiplexer known 
as Netlink. A single Aries device provides the network connectivity for all four nodes on a Cray XC blade 
(see Figure 3, next page). The only additional network components required are the cables and 
backplanes connecting Aries devices together.    

Each of the four Aries NICs provides an independent 16X PCI-Express Gen3 host interface. In the 
current Cray XC blade design these interfaces connect to four independent dual socket Intel® Xeon® 
nodes. Each node has a pair of Intel Xeon E5 processors (providing 16 or more cores) and 8 DDR-3 
memory channels each with a single DIMM. Memory capacity is 64 or 128 GB per node. Future Cray XC 

                                                      
5 The extent to which intra-group bandwidth needs to be over provisioned depends on the traffic pattern. A factor of two is 
desirable.  
6 The advantage of reduced numbers of optical links is lost if all traffic is non-minimal, but the reduced costs arising from use of 
a direct network remain.  
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series blade designs could include other x86 processors, hybrid CPU/accelerator nodes or different 
ratios of NICs to CPUs. 

 

 

The Netlink multiplexor provides dynamic load balancing, distributing packets over the injection ports 
according to load. The Aries router connects 8 NIC ports to 40 network ports, operating at rates of 4.7 
to 5.25 GB/s per direction per port. Each router provides both intra-group and inter-group links. 

Aries is manufactured using the TSMC 40nm process. Aries has 120 network SerDes operating at rates 
of 12.5 to 14 Gbps and 64 PCI-Express SerDes operating at 8 Gbps. The die size is 16.6 mm × 18.9 mm. 
The gate count is approximately 217 million. Aries uses a HiTCE ceramic package developed by 
Kyocera. The package is 52mm square with a 51 × 51 ball grid array.  

Aries NIC 

The Aries NIC is based on the hardware pipeline developed for the Gemini design used in the Cray XE6 
system. The node issues commands by writing them across the host interface to the NIC. The NIC then 
packetizes these requests and issues the packets to the network. Packets are routed across the network 
to a destination NIC. The destination executes the operation specified in the request packet and returns 
a response to the source. Packets contain up to 64 bytes of data.  

The major functional units of the Aries NIC are shown in Figure 4 and described as follows (next page): 
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Figure 3: A single Aries system-on-a-chip device provides network connectivity for the four nodes on a Cray XC blade.  
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The Cray XC system runs distributed memory applications that use MPI, Cray SHMEM and PGAS 
programming models. The system is cache coherent but allows only memory from the local node to be 
cached. Remote references are performed as gets/puts and atomic memory operations (AMO) and are 
never cached by the initiator. This approach reduces overhead for the expected case of explicit 
communication between nodes. For example, a put causes data to flow directly across the network to 
the target node. If the target line is in the cache, the system is capable of updating the cache directly.  

Address Translation 

The Aries network employs a 3-tuple — the network address — to specify a logical address in a user 
process on a remote node. The address consists of an 18-bit node identifier, a 12-bit memory domain 
handle (MDH) associated with a memory segment registered at the remote node, and a 40-bit offset 
into this segment. The 70-bit network address extends the physical address space of the x86 node, 
enabling global access to all of the memory of the system. The MDH is combined with the offset to 
generate a user virtual address in the target process. The input/output memory management unit 
(IOMMU) translates this virtual address to a physical address in the target node.    

The Aries IOMMU provides virtual-to-physical address translation for incoming network requests, 
fetching network responses, local reads generated by the NIC and completion event writes. It supports 
Linux 4 KB pages using two-level translation and huge page sizes of up to 64 GB using a single level of 
translation. Additionally, the IOMMU includes a four-way set associative page table entry (PTE) cache 
with 128 entries each of eight PTEs and a deep pipeline to hide the latency of fetching PTEs on a cache 
miss. The system does not require the use of large pages on Aries; their use is a performance 

Figure 4: Aries NIC block diagram. Output flows from the host interface on the left towards 
the network on the right, input flows from right to left. 
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optimization as it is on the main CPU. Fetching PTEs can consume significant host bandwidth on 
random access patterns. This load can be reduced by using large pages and, thus, improve 
performance. Large pages are used by default for the Cray SHMEM symmetric heap. The Cray 
programming environment makes it straightforward to use large pages for the data segment and heap. 
 
Aries supports virtualization of the MDH pool via a mechanism known as virtual memory domain 
handles (vMDH). The handle provided by the application is translated using a content-addressable 
memory (CAM) in each NIC. If a match is found, the corresponding MDH base value is added to the 
value in the packet to generate the MDH. A parallel job running across multiple nodes can refer to a 
particular memory segment (e.g., symmetric heap) using the same value on all nodes. The vMDH 
mechanism avoids the need for non-scaling data structures and reduces the cost of issue. 

Aries supports virtual node addressing as well as virtual memory addressing. The NIC translates virtual 
node identifiers used by the communications libraries to physical network locations. The node identifier 
translation mechanism supports mapping around failed nodes and those allocated to other 
communication domains. Each job has the impression of running on a contiguous range of nodes, 
again avoiding the need for non-scaling data structures and reducing the issue overheads. 

Remote Memory Access 

Aries provides two remote memory access methods: fast memory access (FMA) and block transfer. 

FMA is a mechanism whereby user processes generate network transactions — puts, gets and AMOs — 
by writing directly to an FMA window within the NIC. The FMA unit translates programmed I/O (PIO) 
writes by the processor into fully qualified network requests. On initialization, the user process is 
allocated one or more FMA descriptors and associated FMA windows. Writes to the FMA descriptor 
determine the remote processing element and the remote address associated with the base of the 
window. Writes to the put window generate a stream of remote put requests, each transferring up to 
64 bytes of data. It is necessary to insert x86 sfence instructions between descriptor and data writes and 
on completion of each data write. Non-fetching AMOs such as atomic add are generated in a similar 
fashion. Storing an 8-byte control word to the get window generates a read request (get) of up to 64 
bytes or a fetching AMO. FMA provides both low latency and high issue rate on small transfers. 

FMA supports scattered accesses by allowing the user library to select which bits in an FMA window 
address determine the remote address and which the remote PE. Having set the FMA descriptor 
appropriately, one can, for example, store a cache line of data (64 bytes) to each process in a parallel 
job by simply storing a contiguous block of data to the FMA window. This approach can be used for 
addressing a series of remote nodes without incurring the cost of additional descriptor updates or 
sfence with each additional remote node accessed. 

FMA provides source-side synchronization methods for tracking when put requests have reached a 
“globally ordered” point at the destination node and when responses to get requests have completed 
at the local node. Additionally, FMA makes it possible to issue puts that generate destination-side 
synchronization events enabling a process on the remote node to be notified of new data or poll a 
completion queue for its arrival.  

The Aries NIC includes “FMA launch” — a novel fast path which optimizes the issue rate for single word 
remote memory operations. Once an FMA window has been initialized and a transaction has been 
opened, remote memory operations can be issued with just a single 128-bit write from host to NIC and 
an x86 sfence instruction. Each of these remote memory operations can target an arbitrary remote PE 
and offset. A completion event is generated once the transaction has been closed and all pending 
remote memory operations have been completed. The DMAPP library provides a lightweight wrapper 
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around this functionality for use by the CAF, UPC and Chapel compilers together with the MPI and Cray 
SHMEM libraries.  

Aries augments FMA get functionality with an optional “flagged response” feature. When this feature is 
used, the get response data is accompanied by a flag word written to local memory. The application 
may poll on the flag word to determine the arrival of responses to individual get requests.  

Aries supports a wide range of atomic operations, e.g., those with put semantics such as atomic add 
and those with get semantics, such as conditional swap. Aries maintains a 64-entry AMO cache, 
reducing the need for reads of host memory when multiple processes access the same atomic variable. 
Host memory is updated each time the variable is updated. Lazy update mechanisms are also provided 
to reduce load on the host interface. Network atomics are not coherent with respect to local memory 
operations; all processes must use the Aries application interface to update a global atomic variable.  

The Aries block transfer engine (BTE) supports asynchronous transfer between local and remote 
memory. Library software writes block transfer descriptors to a queue and the Aries hardware performs 
the transfers asynchronously. The BTE supports memory operations (put/get) where the user specifies a 
local address, a network address and a transfer size. In addition, the BTE supports channel operations 
(send) where the user specifies a local address and a remote node but no destination address. Channel 
semantics require the user to have pre-posted a receive buffer with the target BTE.  

The BTE unit supports up to four concurrent block transfers. If the transfer is large, then a single active 
channel is sufficient to sustain full bandwidth. The ability to pipeline transfers on multiple BTE channels 
ensures that full bandwidth can be maintained at smaller transfer sizes. By default, there is no 
guarantee of completion ordering amongst block transfers issued by a given NIC. Fence operations are 
used where necessary to ensure that one transfer is completed before another starts. Aries provides 
support for user-space launch of block transfer requests, reducing the issue latency and hence the 
minimum efficient block transfer size. 

In general, FMA is used for small transfers and BTE for large. FMA transfers are lower latency but require 
the involvement of the CPU. BTE transfers take longer to start and impose a higher load on the host 
interface but once initiated can transfer large amounts of data (up to 4 GB) without CPU involvement.     

Ordering and Completion 

Cray networks support ordering between transactions which provide an envelope for multiple network 
operations.  

When using FMA, software explicitly defines the bounds of each transaction. With BTE, a transaction 
consists of one or more block transfers. Hardware counters track the constituent requests of each 
transaction and their corresponding responses. In this way Aries determines when each transaction has 
completed at both the local and the remote nodes. The operations within a transaction may complete 
in arbitrary order. For example, there is no guarantee that bulk data will be delivered in byte order. 
Completion events are generated when the transaction has completed. The completion event reports 
the successful execution of the transaction or provides details of a failure. Aries completion queues 
(CQs) provide a lightweight event notification mechanism. The completion of a BTE or FMA transaction 
generates an event in a user (or kernel thread) specific queue. Completion events can be generated on 
either the source or the target node. They include both user data and transaction status information.  
Errors are reported via the status word in a completion event.   

Aries uses a mechanism known as “sequence identification” to track the set of packets that make up a 
transaction. Every packet in the sequence contains the same synchronization sequence identification 
(SSID). Packets can be delivered in arbitrary order; each contains a network address and can be 
committed to memory as soon as it arrives, eliminating the need for re-order buffering. The sequence as 
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a whole completes and CQ events are generated when all packets have been delivered. This 
mechanism is implemented using the SSID and output request buffer (ORB) blocks on the output side 
(see Figure 4) and the receive message table (RMT) block on the input side. The RMT caches active SSID 
state, avoiding a network round trip for performance critical operations. It also matches BTE send 
requests to queued receive descriptors. 

Reductions and Barriers 

The Aries collective engine (CE) provides hardware support for reduction and barrier operations. The 
CE is optimized for latency sensitive, single-word operations that limit scalability in many large HPC 
applications. The CE block of each Aries NIC provides four virtual CEs (also simply referred to as CEs), 
each with its own reduction tree. At any point in time one collective operation may be pending on each 
of the CEs. The software stack may assign them to different jobs, to different communicators within a 
job or pipeline their use by a single communicator. The CE supports reduction trees of branching ratio 
up to 32. The high branching ratio ensures scalability with a tree of depth three covering most system 
sizes. Reduction trees are created during job initialization and potentially later on demand.  

 

 

Each node joins a reduction operation supplying its contribution, generally the result of a local shared 
memory reduction operation. Partial results are passed up the tree towards the root with the NICs 
performing the reduction operations. The result is scattered back down the tree and written to memory 
in each of the participating endpoints. CQ events are generated on each node as the reduction 
completes. This approach reduces latency by avoiding unnecessary host interface crossings and 
memory updates. The Aries design does not require user processes to be scheduled in order to progress 
a reduction; the entire network reduction is offloaded to the NICs, reducing sensitivity to operating 
system jitter.  

The Aries CE supports common logical, integer and floating point reduction operations on 32-bit and 
64-bit operands7. The Min and Max reductions return a value and an identifier provided by each 
endpoint, supporting the MPI_MINLOC and MPI_MAXLOC operators.    

  

                                                      
7 Aries does not support MPI_PROD. This rarely used reduction together with those for user-supplied operators and those 
requiring bit reproducibility are executed in the main CPU.  

Figure 5: Reductions and barriers are offloaded to the Aries collective engine. Reduction trees with branching 
ratios of up to 32 are constructed amongst the NICs allocated to each job. 
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System Functionality 

The Aries NIC provides a High Precision Event Timer (HPET) and an associated clock frequency 
generator. The HPET is accessible via memory-mapped I/O (MMIO). It can also provide regular 
interrupts. Global synchronization pulses are distributed over the network. This mechanism allows for 
the implementation of a synchronized global clock. 

Aries Router 

The Aries router is an evolution of the tiled design, used in the Cray Black Widow system [6] and the 
Cray XE6 system [3]. Using a tile-based microarchitecture facilitates implementation as each tile is 
identical and produces a very regular structure for replication and physical implementation in silicon.  

A number of enhancements to the tiled-router design have been made in Aries to increase 
performance and support the Dragonfly topology: 

• Wider data paths to handle higher bandwidths 

• Number of virtual channels increased to eight 

• Input buffering increased to tolerate longer cable lengths, up to 35m in the case of optical links 

• Dynamic per-virtual channel input buffering allows a single active virtual channel to achieve full 
bandwidth over a long cable 

The router tiles are arranged in a 6 × 8 matrix. Forty of the tiles, referred to as “network tiles,” connect to 
the SerDes linking devices together. Eight of the tiles, called “processor tiles” connect to the Netlink 
block and hence the Aries NICs. Four of the processor tiles are shared between NIC0 and NIC1, the 
other four are shared between NIC2 and NIC3. The Netlink block multiplexes traffic over the processor 
tiles on a packet-by-packet basis. This mechanism distributes traffic according to load, allowing NICs to 
exceed their share of bandwidth on non-uniform communications patterns such as gather and scatter.  

The tiles are made up of an input queue, a sub-switch and a column buffer. The input queue for each 
network tile receives packets and determines how to route them. It then sends the packet across a row 
bus to the sub-switch in the appropriate column. The sub-switch receives packets from each of the eight 
input queues in the row on each of the eight virtual channels (VC) — hence the 64 × 6 cross-point 
switch (see Figure 6, next page). It switches the packet to the appropriate output and sends it out on 
one of six column busses to the column buffer in the appropriate output row. The column buffers 
collect packet data from the six tiles within each column and multiplex them onto the output link.  

A SerDes logic block (SLB) is external to each network tile (located around the perimeter of the Aries 
chip). It contains the SerDes itself, a link control block (LCB) and the SerDes management logic. The SLB 
provides the serial interface for router-to-router connections over electrical or optical links. The LCB 
provides reliable data transfer between devices. The LCB transfers data in sets of ten 48-bit flits, adding 
a 20-bit cyclic redundancy check (CRC) to the last flit in each set — the tenth flit is also used to carry 
global clock and network load information. The link input logic checks the CRC and acknowledges 
success or failure. The sending link retransmits on receipt of an error. The LCB includes a send buffer of 
sufficient size to cover the roundtrip time on a long optical cable. 

Each tile has four sets of route tables, local minimal and non-minimal tables for routing within each 
group, global minimal and non-minimal tables for routing between groups. Minimal routes specify 
direct paths to nodes within each group and to other groups. Non-minimal routes distribute traffic 
uniformly over intermediate groups. The routing pipeline generates two minimal and two non-minimal 
outputs for every packet. Adaptive routing decisions are made by selecting from this choice of outputs 
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using routing control bits in the packet header, load information for each of the output ports, and a 
programmable bias mechanism. Aries provides three different load metrics — one local and two remote. 
Each Aries device computes its load and distributes the information to its neighbors every 10 cycles, 
ensuring that adaptive routing decisions are made on the basis of up-to-date information. The Aries 
router implements four VCs for requests and four for responses. Mechanisms are also provided for 
switching VCs. Each tile is able to determine the output VC based on its location and type, the input VC 
and a number of Dragonfly-specific routing parameters.  

 

 

 

 

 

 

 

 

 

Dragonfly Implementation for the Cray XC Series 
The Dragonfly topology was chosen for the Cray XC series to provide good global bandwidth and low 
latency at lower cost compared to a fat tree. Cray XC systems are constructed from four node blades 
with the processors and memory on daughter cards. Each blade has a single Aries network ASIC. Each 
of its NICs is connected to one node over a 16X PCI-Express Gen3 host interface. Each chassis has 16 
such 64-node blades (see Figure 7, next page) and each cabinet has three chassis (192 nodes). The 
Dragonfly network is constructed from two-cabinet electrical groups with 384 nodes per group. A large 
group size is beneficial to both performance and scalability but is limited by mechanical and electrical 
constraints. The number of ports in the Aries router and the balance between group and global 
bandwidth also influences the group size choice. All connections within a group are electrical and 
operate at 14 Gbps per lane.  

A 2-D all-to-all structure is used within each group (see Figure 8). The chassis backplane provides 
connectivity in the rank-1 (green) dimension; each Aries is connected to each of the other 15 Aries in 
the chassis. The rank-2 (black) dimension is formed by connecting three links from each Aries to its peer 

 

 

 

Figure 6: Aries tiled 
router. Each tile 
supports a single link, 
eight of which connect 
to the NICs and 40 to 
other Aries devices. 
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in each of the other chassis making up the group.  Aries link speeds limit the maximum length of the 
copper cables used to connect chassis to approximately 3m. This length is sufficient to connect the six 
chassis housed in two adjacent cabinets. Cables are attached directly to the blades in order to minimize 
the number of connectors per link and reduce the associated signal degradation.  

Each Aries provides 10 global links — a total of 960 per group and a sufficient number to connect to 
960 other groups. This is more global links than required and so they are combined in sets of four, 
restricting the maximum system size to 241 groups. The chassis backplane connects 10 global links from 
each pair of blades to five CXP connectors (see Figure 7). The Cray XC system uses 12X active optical 
cables (AOCs) operating at 12.5 Gbps to connect the groups together. Electrical cables can be used for 
the global links, although this restricts the maximum system size.  

 

 

 

 

 

The four NICs on each Aries connect to eight router ports for packet injection/ejection. When intra-
group traffic is uniformly distributed over one dimension, a portion will stay local to each router: one 
part in 16 for the green dimension and one part in six for black. The design of the Cray XC group (see 
Figure 8, next page) ensures that intra-group bandwidths meet or exceed the factor of two desirable for 
Dragonfly networks. With 10 optical ports per Aries, the global bandwidth of a full network exceeds the 
injection bandwidth — all of the traffic injected by a node can be routed to other groups.   

Figure 7: A Cray XC chassis consists of 16 four-node blades with one Aries per blade. The chassis backplane 
provides all-to-all connectivity between the blades. Each blade provides five electrical connectors used to connect 
to other chassis within the group. Each Aries also provides 10 global links. These links are taken to connectors on 
the chassis backplane. Active optical cables are used to connect the groups together.  
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A system with full global bandwidth requires the following components: 

 Per Group Per Node 

Aries devices 96 0.25 

9X copper cable (5×16×6)/2 = 240 0.625 

12X active optical cable (40×6)/2 = 120 0.3125 

Table 1: Cray XC component counts 

A comparable fat tree such as FDR InfiniBand requires two 4X active optical links per node running at 
higher clock speed to provide the same global bandwidth. 

Cray XC Routing 

In a Cray XC network request packets are routed from source to destination node. Response packets are 
independently routed back to the source node; request and response traffic are not required to follow 
the same path. Packets are routed deterministically or adaptively along either a minimal or non-minimal 
path. Minimal routing within a group will always take at most one green and one black hop. Minimal 
routing between groups will route minimally in both the source and target groups and will take exactly 
one global optical hop. Note that minimal routing implies a direct route between a source and a target, 
not the minimal number of hops required. Minimal paths may differ in hop count if, for instance, one 

Figure 8: Structure of a Cray XC system’s electrical group. Each row represents the 16 Aries in a chassis with 
four nodes attached to each and connected by the chassis backplane. Each column represents a blade in one 
of the six chassis per two-cabinet group, connected by copper cables. 
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path does not require a green and/or black hop in the source and/or destination groups due to 
placement of the global link used between groups. For example, in a full bandwidth system with six 
groups and 48 cables from each group to each of the other groups, each Aries will be directly 
connected to all of the other groups, reducing the minimal path length to three.  

Non-minimal routing in the Cray XC system is an implementation of Valiant’s routing algorithm [6]. This 
algorithm is used to avoid congestion and spread non-uniform traffic evenly over the set of available 
links in the system. Non-minimal routes within a group can be thought of as routing minimally from the 
source Aries to a randomly selected intermediate router known as the “root,” and then minimally to the 
target Aries. Non-minimal routes within a group can take up to two green hops and two black hops. A 
global non-minimal path routes “up” to an intermediate Aries anywhere in the system and then “down” 
to the destination node using a minimal path. The route tables are populated so as to distribute non-
minimal traffic uniformly over all routers in the system. The maximum path length of a global non-
minimal path is 10 hops. Most non-minimal paths are shorter than this (six or seven hops) in all but the 
largest systems.  

Aries supports a sophisticated packet-by-packet adaptive routing mechanism. The routing pipeline 
selects up to four possible routes at random, two minimal and two non-minimal routes. The load on 
each of the selected paths is compared and the path with the lightest load is selected. Current link loads 
are computed using a combination of downstream link load, estimated far-end link load and near-end 
link load using the methods introduced in reference [1]. Downstream load information is propagated 
from router-to-router at high frequency so as to ensure that routing decisions are made on the basis of 
up-to-date information. Load metrics can be biased towards minimal or non-minimal routing using 
information supplied by the application. With the default routing algorithms, packets will take a minimal 
path until the load on these paths increases and a non-minimal path is preferred.  

Each network packet specifies a routing control mode. Where the runtime requires ordered packet 
delivery, the route is selected using a deterministic hash computed on fields from the packet header. In 
general, the Cray XC system uses adaptive routing.   

The adaptive routing algorithms can be tuned at both the system and application levels. At the system 
level, we tune the routing policy based on the packet’s path. The network API allows the programmer 
to select between adaptive routing policies. For example, a library developer might determine that a 
particular policy is appropriate to a communication intensive function (e.g., a fast Fourier transform) 
and switch to this policy for the duration of the call.  

Network Reliability, Availability and Serviceability  

Aries offers sophisticated reliability, availability and serviceability (RAS) capabilities with comprehensive 
hardware error correction coverage, resulting in fewer retransmissions, higher availability and fewer 
maintenance events. The network uses a combination of both hardware and software techniques to 
avoid a broad class of well-understood faults such as single-bit memory errors and transmission errors 
on network links. However, when a fault does manifest as an error, the hardware and software layers 
identify and contain the fault, recover from the error if possible and prevent data corruption. Aries 
provides support for identification of the first error within a sequence of errors occurring in a short 
interval of time. This mechanism simplifies root cause analysis of problems. 

Although modern semiconductor fabrication processes have improved yield and reduced the extent of 
manufacturing defects or “hard” errors in the silicon, high-density, low-voltage devices such as Aries are 
susceptible to influences of process variation, electrical noise and natural radiation interference. The 
resultant errors from these effects are referred to as “soft” errors since they can corrupt state, but 
generally do not result in any permanent damage to the underlying circuitry. Soft errors are detected 
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and possibly corrected by mechanisms such as parity, error correcting code (ECC) and CRC. Within 
Aries, major memories and much of the data path are protected using ECC. Data in transit between 
devices is protected using CRCs. 

Packet level CRC checks in the network transport layer provide immediate indication of corrupt data 
from end to end. Errors are reported as precisely as possible: Data payload errors are reported directly 
to the user, but control errors cannot always be associated with a particular transaction. In all cases, 
either the operating system or the Hardware Supervisory System (HSS) are notified of the error. Router 
errors are reported at the point of the error with the packet possibly being discarded. The initiating NIC 
times out the transaction, reporting a timeout error to the user process.  

The Aries network link-layer protocol provides reliable packet delivery across each link. A 20-bit CRC 
protects 60 bytes of data distributed across three SerDes lanes. The LCB provides automatic 
retransmission in the event of error. For a 25,000 node system with a bit error rate (BER) of 10-7 on all 
SerDes lanes, the expected rate of undetected errors is less than one every 7,250 years.  Measured bit 
error rates on correctly functioning links are better than 10-12.  

The SSID mechanism provides functionality to assist in the identification of software operations and 
processes impacted by errors. This aids error recovery and improves system resiliency by enabling the 
overall system to survive error events even when remedial action must be applied to those impacted 
processes. The SSID provides this functionality by monitoring errors detected at the source NIC as well 
as errors returned from the destination NIC in response packets. Information on all such errors is 
included in the status field of the completion event. By incorporating error detection and handling 
mechanisms into the communication protocol, the status of every transaction can be passed back to the 
originating process. User level libraries, MPI in particular, use this information to ensure that applications 
are resilient to transient network failures.  

Adaptive routing helps mitigate the effects of link failure. The adaptive routing hardware spreads 
packets over the correctly functioning links according to load. If a link fails, the router automatically 
stops sending packets in that direction. In the event of lost connectivity, which may occur on blade 
failures or hardware removal, it is necessary to route around the problem. The HSS performs this task.  

PCI-Express traffic between the CPU and Aries is protected using a 32-bit link layer CRC per packet with 
automatic retry in case of error. PCI-Express includes support for advanced error reporting (AER) so that 
link level errors can be reported to the host processor (and/or HSS) to assist in fault isolation and 
recovery. Correctable AER errors are recovered by the PCI-Express protocol without the need for 
software intervention, and without any risk of data loss. Uncorrectable errors are passed to the 
operating system. 

Cray XC systems minimize the number of passive components in each link path. This approach increases 
reliability and facilitates the diagnosis of failed links. Each link comprises three separate SerDes lanes. 
Links can degrade to two or one lane in the event of failure. Additionally, Cray XC systems provide 
water cooling of the AOCs — regulating their temperature improves both error rates and component 
lifetimes.  

The HSS monitors the Cray XC system (see Figure 9). Daemons running on the blade level controllers 
are responsible for monitoring the memory mapped registers (MMR) which indicate the health of the 
network. Fatal errors can be configured to generate interrupts to HSS. Non-fatal errors are generally 
polled in order to track error rates. These monitors generate events that feed into a link failover 
manager. It reacts to failed links or routers by computing updates to the routing tables that avoid the 
problem. Where necessary, HSS can quiesce network traffic so that route table changes can be 
deployed safely. Applications pause briefly while this operation is in progress; traffic is released once the 
re-route process has completed.  
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Figure 9: Cray XC Hardware Supervisory System (HSS) 

Cray XC Network Software Stack 

The Cray XC system supports both kernel communication, through a Linux device driver, and direct user 
space communication, where the driver is used to establish communication domains and handle errors 
but is bypassed for data transfer. Parallel applications typically use a library such as Cray MPI or Cray 
SHMEM in which the programmer makes explicit communication calls. Alternatively, they may use a 
programming model such as CAF, UPC or Chapel in which the compiler automatically generates the 
inter-process communication calls used to implement remote memory accesses.  

Standard communications libraries are layered over the user level generic network interface (uGNI) 
and/or the distributed memory applications (DMAPP) library which perform the Cray network-specific 
operations (see Figure 10). Kernel modules such as the Lustre network driver (LND) communicate via 
the kernel generic network interface (kGNI).   

Each process is allocated its own FMA descriptor allowing independent issue of remote memory access 
requests. Multithreaded processes can allocate an FMA descriptor per thread provided the number of 
threads per node is limited; each Aries NIC supports a maximum of 127. 

Security is maintained by the use of communication domains. Each such communication domain 
defines a set of processes or kernel threads that are allowed to communicate. Creating a 
communications domain is a privileged operation. Any attempt to communicate with a process outside 
of the communication domain is blocked by hardware and generates an error.   

Program initialization follows a sequence of steps in which the placement scheduler (ALPS) first creates 
a communication domain and then starts the user processes. The processes sign on to the 
communication domain, create their completion queues and register memory with the communication 
domain. Having completed this sequence of steps, the processes in a parallel job can initiate either 
put/get- or send/receive-style communication without operating system intervention. These operations 
are asynchronous with completion events being generated when an operation or sequence of 
operations has been completed. This approach promotes programming models in which 
communications is initiated early so as to hide latency. Aries optimizes for this, supporting both large 
numbers of pending operations and high issue rates. 
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Cray MPI uses the MPICH2 distribution from Argonne. The MPI implementation uses a Nemesis driver 
for Aries layered over uGNI [7]. Use of FMA gives MPI applications the ability to pipeline large numbers 
of small, low latency transfers — an increasingly important requirement for strong scaling on multicore 
nodes. Where space is available, intermediate size messages are sent eagerly to pre-allocated system 
buffers. Large messages are transferred using a rendezvous protocol in which bulk data transfer occurs 
after matching of an MPI message header and a receive request. Message matching is progressed by 
each call, or in the case of large messages, using an optional progress thread. The Aries block transfer 
engine is used to provide high bandwidth, good overlap of computation and communication, and 
efficient use of main memory bandwidth. Implementation of latency sensitive collectives, including 
MPI_Allreduce and MPI_Barrier, is optimized using the Aries collective engine.  

Cray SHMEM [9] provides an explicit one-sided communication model. Each process executes in its own 
address space but can access segments of the memory of other processes, typically the static data 
segment and the symmetric heap through a variety of put and get calls, AMO calls and collectives. Since 
the Cray T3D system, Cray supercomputers have supported Cray SHMEM. Its implementation for Aries 
provides the application programmer with fine-grain control of communication with minimum 
overhead.  

Aries is designed to provide efficient support for emerging partitioned global address space (PGAS) 
programming models. Compiler-generated communication typically results in large numbers of small 
irregular transfers. The Aries FMA launch mechanism minimizes the issue overhead and its high packet 
rate maximizes performance. Cray’s Fortran, UPC and Chapel compilers use a common runtime 
implemented with DMAPP. The DMAPP library includes blocking, non-blocking and indexed variants of 
put and get along with scatter/gather operations, AMOs and optimized collectives. The GNI and 
DMAPP interfaces are provided for third parties developing their own compilers, libraries and 
programming tools.  

Figure 10: Cray XC network software 
stack. A high degree of compatibility is 
maintained with the Cray XE6 system. 
The Aries implementations of GNI and 
DMAPP build on those for the Gemini 
NIC, adding support for Aries features.  
Compatibility is maintained for 
software that uses these interfaces.  
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The Aries versions of GNI and DMAPP preserve the application interfaces developed for Cray XE6 
systems, ensuring compatibility of higher levels of software. Support for Aries hardware features such as 
FMA launch, hardware collectives and user space BTE transfers is encapsulated within the Aries 
versions of GNI and DMAPP. 

Aries Performance 

The following measurements of Aries performance were made on a 750 node pre-production Cray XC 
system using Intel Xeon E5 (codenamed Sandy Bridge) CPUs operating at 2600MHz and CLE release 
5.08.  

Peak bandwidth of the 16X PCI-Express Gen3 interface connecting each Cray XC series node to its Aries 
is 16 GB/s, 8 giga-transfers per second, each of 16 bits. However, PCI-Express overheads are 24 bytes on 
every transfer. In addition, overheads for alignment and flow control reduce the bandwidth available to 
application data. The Aries NIC can perform a 64-byte read or write every five cycles (10.2 GB/s at 
800MHz). This number represents the peak injection rate achievable by user processes. With symmetric 
traffic both the host interface and the links have additional overheads as requests and responses share 
data paths. Their effect is to reduce bandwidth on symmetric bulk data transfer to approximately 8 GB/s 
in each direction.  

Each processor tile can inject a 48-bit flit per clock cycle — at 875 MHz this equates to 5.25 GB/s. Links 
are three lanes wide in each direction and operate at speeds of up to 14 GHz. Their raw bandwidth is 
5.25 GB/s. Optical links are over provisioned by 10/8 in order to maintain bandwidth with AOCs 
operating at 12.5 GHz. Each 64-byte write (put) requires 14 request flits and 1 response flit. A 64-byte 
read (get) requires three request flits and 12 response flits. LCB overheads are 1 flit in 10. Taking packet 
and LCB overheads into account, overall payload efficiency is (64 bytes/15 flits) × (9 flits/60 bytes) = 64 
percent. With balanced symmetric traffic from 4 NICs running at 8 GB/s, packets must be distributed 
over at 10 or more of the 40 network ports to match the injection load.  

In each electrical group 384 links cross the bisection in the green dimension and 432 cross in the black 
dimension. The green dimension sets the lower limit of 384 × 5.25 × 2 = 4032 GB/s. Bisection 
bandwidth of the system is controlled by the number of optical cables. With 12.5 GHz optical links, each 
AOC provides a peak bandwidth of 18.75 GB/s in each direction between a pair of groups. The peak 
bisection bandwidth of a system (in GB/s) is given by   

18.75 × 
𝐺

2(𝐺 − 1)
× 𝑜𝑝𝑡𝑖𝑐𝑎𝑙 𝑐𝑎𝑏𝑙𝑒𝑠 𝑝𝑒𝑟 𝑔𝑟𝑜𝑢𝑝 ×  𝐺 

where G is the number of full groups. The ratio G/2(G-1) reflects the proportion of links crossing the 
bisection, falling from a value of one for two groups to ½ as the system size increases. The maximum 
number of optical cables per group is 240. For reduced bandwidth systems or systems in which the 
number of optical ports per group does not divide evenly into the number of other groups, the number 
of optical cables per group, and hence the global bandwidth, is reduced.   

For applications in which traffic is uniformly distributed from each node to each of the other nodes 
(e.g., all-to-all), global bandwidth controls performance rather than the bisection — and all the optical 
links contribute. Peak global bandwidth is 11.7 GB/s per node for a full network. With the payload 
efficiency of 64 percent this equates to 7.5 GB/s per direction.  A high proportion of all traffic can be 

                                                      
8 Performance results may vary with the network configuration, choice of processor or software release. Please contact your 
local Cray representative for figures relating to a specific configuration.  
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routed to remote groups. In practice, the large electrical group size ensures that significant volumes of 
traffic remain local to each group.  

Measured end-to-end latencies for user-space communication9 are 0.8 μs for an 8-byte put, 1.6 μs for an 
8-byte get and approximately 1.3 μs for an 8-byte MPI message (see Figure 11). With more software 
overheads, the MPI latencies depend on the type and speed of CPU.  Get latencies are higher than put 
as a PCI-Express read is required on the remote node. In each case there is little additional latency when 
transferring 64 or 128 bytes of user data rather than just 8 bytes. Latency is controlled by the number of 
host interface crossings. With multiple processes per node issuing requests, the host interface crossings 
are overlapped with data transfer and there is a high aggregate issue rate. 

 

 
 

For a quiet network, each router-to-router hop adds approximately 100ns of latency, a maximum of 
500ns for minimally routed packets. The adaptive routing hardware will select a minimal path when the 
network is quiet. Quiet network latency between any pair of nodes is less than 2 μs on the largest 
systems.  

Bandwidths measured between user processes on different nodes are up to 10 GB/s (depending on the 
test used) for unidirectional traffic. Bidirectional bandwidths exceed 15 GB/s, 7.5 GB/s in each direction 
(see Figure 12, next page).  With multiple issuing processes per node, half-peak bandwidth is obtained 
for puts of size 128 bytes.  

 

                                                      
9 Latency measurements are for processes using CPU 0 — the CPU directly connected to the Aries NIC. Latencies are higher for 
CPU 1 as traffic must cross the QPI interfaces within each node. 

Figure 11: Aries latencies 
as a function of transfer 
size. Results are for MPI 
send/recv, Cray SHMEM 
puts and gets. Results were 
measured using Intel Xeon 
E5 CPUs operating at 
2600MHz. 
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A single node can issue put requests at rates of up to 120 million per second using the FMA launch 
mechanism (see Figure 13). If the MDH must be modified for each request, then the put rate drops to 
80 million per second, as an additional write to the FMA descriptor and an x86 additional sfence 
instruction are required for each request. The issue rate for a single thread/process depends upon the 
CPU core — rates of up to 7.5 million requests per second per core have been measured to date.   
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Figure 12: Aries put 
bandwidth as a function 
of message size. Results 
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Figure 13: Aries put 
rates as a function of 
the number of 
processes per node. 
Hyperthreading was 
enabled for this test. 
Results were 
measured using 
Intel Xeon E5 CPUs 
operating at 
2600MHz. 
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The Intel IMB benchmark [10] returns a bandwidth of 8.5 GB/s for the “pingpong” test in which one 
MPI transfer is active at any point in time (see Figure 14). Streaming tests (such as the OSU MPI 
bandwidth benchmark [11]) and those with multiple processes per node report bandwidths of up to 
9.7 GB/s. Each NIC supports up to 1,024 outstanding packets, ensuring that bandwidths can be 
maintained between widely separated nodes. Cray MPI is optimized to minimize memory requirements 
on large jobs. Performance can be tuned by adjusting the thresholds at which the MPI implementation 
switches protocol. See dashed line in Figure 14 where thresholds are adjusted to increase bidirectional 
bandwidth at intermediate sizes.  

 

 

Figure 15 (next page) shows measured MPI_Allreduce latencies for 64-bit floating-point sum. We 
compare the time taken using the optimised software algorithm with that obtained using offload to the 
Aries collective engine. Data is for 64 to 750 Intel Xeon E5 nodes with 16 processes per node. Latency 
for MPI_Allreduce over 12,000 processes is less than 10 microseconds. We see significant improvements 
in performance of the software algorithm from use of core specialization – a CLE feature in which 
specific cores (or Intel Xeon Hyper-threads) are dedicated to the operating system. The gains from core 
specialization are smaller at these scales with offload to Aries; the main CPU is required for the local 
shared memory reduction, but not to progress the network phase.  

The Aries AMO unit is capable of one operation every two cycles. Rates of up to 400 million AMOs per 
second can be obtained when many processes update a single cached variable. AMO rates to random 
variables that miss in the AMO cache depend on the performance of host memory system and the load 
generated by user processes. Rates in the range of 50 to 120 million per second are possible depending 
on size of array being accessed. Large page sizes are required in order to maintain random put or AMO 
rates over extended target arrays. 
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bandwidth as a 
function of message 
size for ping pong 
(single message at a 
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Results were 
measured using Intel 
Xeon E5 CPUs 
operating at 
2600MHz. 
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Cray XC Series Configuration 

Cray XC systems are constructed from a number of two-cabinet groups, each containing 384 nodes. 
The global links from each group are divided into bundles of equal size, with one bundle from each 
group connecting to each of the other groups.  Configurations are characterized by the number of 
groups and the number of cables between each pair of groups 

𝑔𝑟𝑜𝑢𝑝𝑠 × 𝑖𝑛𝑡𝑒𝑟-𝑔𝑟𝑜𝑢𝑝 𝑐𝑎𝑏𝑙𝑒𝑠 

The number of inter-group cables per bundle is given by 

𝑖𝑛𝑡𝑒𝑟   -𝑔𝑟𝑜𝑢𝑝 𝑐𝑎𝑏𝑙𝑒𝑠 ≤ 𝐹𝐿𝑂𝑂𝑅 �
𝑔𝑙𝑜𝑏𝑎𝑙 𝑐𝑎𝑏𝑙𝑒𝑠 𝑝𝑒𝑟 𝑔𝑟𝑜𝑢𝑝

𝑔𝑟𝑜𝑢𝑝𝑠 − 1
� 

The maximum number of global cables per group is 240; this number may be reduced substantially in 
systems that do not require full global bandwidth. In general, at least 25 percent of the optical ports 
should be used. For systems of three to 26 cabinets, each bundle should contain a multiple of six cables. 
This configuration rule allows for single chassis granularity of upgrade. For systems of up to 27 to 64 
cabinets, each bundle should contain a multiple of two cables.   

For example, a 12-cabinet (six-group) system may be initially configured with bundles of 12 optical 
cables, using 60 ports from the maximum of 240 available. If the system is upgraded to 16 cabinets 
(eight groups) then new cables bundles are added, connecting the new groups together and 
connecting each of the existing groups to the two new ones. These cables can be added to those in 
place, eliminating the need to rewire the system. Support for long optical cables allows for positioning 
the additional cabinets according to facility requirements. 
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Figure 16: Upgrade from 12 to 16 cabinets. The system is configured with bundles of 12 optical cables connecting each two-
cabinet group to each of the other groups. The initial cable mat (shown in blue) remains in place as the system is upgraded. 
New cable bundles (shown in orange) are used to connect the new groups together and to each of the existing groups.  

The number of optical cables required is given by 

𝑜𝑝𝑡𝑖𝑐𝑎𝑙 𝑐𝑎𝑏𝑙𝑒𝑠 =
1
2

(𝑖𝑛𝑡𝑒𝑟-𝑔𝑟𝑜𝑢𝑝 𝑐𝑎𝑏𝑙𝑒𝑠 × (𝑔𝑟𝑜𝑢𝑝𝑠 − 1) × 𝑔𝑟𝑜𝑢𝑝𝑠) 

Total numbers of optical cables for these configurations are shown in Table 2: 

Cabinets Groups 
Inter-group 

cables Total cables 

12 6 12 180 

16 8 12 336 

Table 2: Numbers of optical cables required to construct the global network 

Bisection bandwidths are determined by the number of cables crossing the worst case bisection, 108 
for the 12 cabinet example and 192 for 16 cabinets.  Bandwidths of this partial network are shown in 
Table 3 together with the maximum values for a full optical network. 

Cabinets Groups Total cables Cables crossing bisection Bisection bandwidth 
(GB/s) 

  Partial Full Partial Full Partial Full 

12 6 180 720 108 432 4050 16200 

16 8 336 952 192 544 7200 20400 

Table 3: Bisection bandwidth in GB/s of partial and full 12 and 16 cabinet systems 

C2-1 C3-1C0-1 C1-1C0-0 C1-0 C2-0 C3-0 C4-0 C5-0 C6-0 C7-0 C8-0 C9-0 C10-0 C11-0

C0-0 C1-0 C2-0 C3-0 C4-0 C5-0 C6-0 C7-0 C8-0 C9-0 C10-0 C11-0
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Small- and medium-size systems (those with 26 cabinets or less) can be upgraded with single chassis 
granularity. Larger systems are constructed from a whole number of cabinets (to a maximum of 64) or a 
whole number of two-cabinet groups (above 64 cabinets). All groups except the last must be full. The 
last group may contain between one and six chassis. These systems are water cooled.   

This description focuses on large, water-cooled Cray XC systems. Air-cooled systems can be constructed 
with a single chassis per cabinet. The backplane provides connectivity between nodes within each 
chassis. The global network is constructed using electrical cables. Supported configurations range from 
one to eight cabinets (64 to 512 nodes) with half or fully populated global network. The upgrade 
granularity is one blade (four nodes).  

Conclusion 

Research undertaken as part of the Cascade program, together with product development at Cray, has 
resulted in a single state-of-the-art component – the Aries network ASIC – that powers the 
communication network of the Cray XC series supercomputer. The Dragonfly network used by the Cray 
XC series provides cost-effective, scalable global bandwidth. This design together with the Cray Linux 
Environment and advanced RAS features allows Cray XC systems to scale to millions of cores. The Cray 
XC programming environment enables efficient use of these resources on the most demanding HPC 
applications.   
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